Code
#!/bin/python3
"""============================================================================
polynomial linear regression script

Ramkumar
Sun Mar 23 05:11:57 PM IST 2025
============================================================================"""

# importing needed modules
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from scipy.stats import qmc

#==============================================================================

# function definitions for sampling
def RandomSampling(n):
    return np.random.sample(n)

def EquispacedSampling(n):
    return np.linspace(0,1,n)

def LatinHypercubeSampling(n):
    sampler = qmc.LatinHypercube(d=1)
    return sampler.random(n).flatten()

def TrueFunction(x):
    return (6*x-2)**2*np.sin(12*x-4)

# sampling data

N     = 5
RS_5  = RandomSampling(N)
ES_5  = EquispacedSampling(N)
LHS_5 = LatinHypercubeSampling(N)

N      = 10
RS_10  = RandomSampling(N)
ES_10  = EquispacedSampling(N)
LHS_10 = LatinHypercubeSampling(N)

N      = 15
RS_15  = RandomSampling(N)
ES_15  = EquispacedSampling(N)
LHS_15 = LatinHypercubeSampling(N)

# linear regression using polynomial of given degree
def linearRegression(x,degree):
    X = np.vander(x,degree+1,True)
    y = TrueFunction(x)
    beta = np.linalg.inv(X.T@X)@X.T@y
    y_sample = X@beta
    return beta,y_sample

x = np.linspace(0,1,101)

beta_5_2,y_sample_5_2   = linearRegression(ES_5,2)
y_pred_5_2 = np.vander(x,2+1,True)@beta_5_2
beta_10_2,y_sample_10_2   = linearRegression(ES_10,2)
y_pred_10_2 = np.vander(x,2+1,True)@beta_10_2
beta_15_2,y_sample_15_2   = linearRegression(ES_15,2)
y_pred_15_2 = np.vander(x,2+1,True)@beta_15_2

beta_5_3,y_sample_5_3   = linearRegression(ES_5,3)
y_pred_5_3 = np.vander(x,3+1,True)@beta_5_3
beta_10_3,y_sample_10_3   = linearRegression(ES_10,3)
y_pred_10_3 = np.vander(x,3+1,True)@beta_10_3
beta_15_3,y_sample_15_3   = linearRegression(ES_15,3)
y_pred_15_3 = np.vander(x,3+1,True)@beta_15_3

beta_5_4,y_sample_5_4   = linearRegression(ES_5,4)
y_pred_5_4 = np.vander(x,4+1,True)@beta_5_4
beta_10_4,y_sample_10_4   = linearRegression(ES_10,4)
y_pred_10_4 = np.vander(x,4+1,True)@beta_10_4
beta_15_4,y_sample_15_4   = linearRegression(ES_15,4)
y_pred_15_4 = np.vander(x,4+1,True)@beta_15_4

# plotting graphs
plt.rcParams.update({"font.size":10})
fig,ax = plt.subplots(3,1,figsize=(12,6),sharex=True,sharey=True)
x = np.linspace(0,1,101)
ax = ax.flatten()

# degree 2
ax[0].plot(x,TrueFunction(x),'-k',label = "True function")
ax[0].plot(x,y_pred_5_2,'-r',label = "predicted")
ax[0].plot(ES_5,y_sample_5_2,'og',label="sample")
ax[0].grid()
#  ax[0].set_xlabel("data points")
ax[0].set_ylabel("y")
ax[0].set_title("N = 5")

ax[1].plot(x,TrueFunction(x),'-k',label = "True function")
ax[1].plot(x,y_pred_10_2,'-r',label = "predicted")
ax[1].plot(ES_10,y_sample_10_2,'og',label="sample")
ax[1].grid()
ax[1].legend(loc=[1.01,0.5])
#  ax[1].set_xlabel("data points")
ax[1].set_ylabel("y")
ax[1].set_title("N = 10")

ax[2].plot(x,TrueFunction(x),'-k',label = "True function")
ax[2].plot(x,y_pred_15_2,'-r',label = "predicted")
ax[2].plot(ES_15,y_sample_15_2,'og',label="sample")
ax[2].grid()
ax[2].set_xlabel("x")
ax[2].set_ylabel("y")
ax[2].set_title("N = 15")

fig.suptitle(r"$(1,x,x^2)$")

# plt.savefig("polynomial_2.png",dpi=150,bbox_inches="tight")

plt.show()

# degree 3
fig,ax = plt.subplots(3,1,figsize=(12,6),sharex=True,sharey=True)
x = np.linspace(0,1,101)
ax = ax.flatten()

ax[0].plot(x,TrueFunction(x),'-k',label = "True function")
ax[0].plot(x,y_pred_5_3,'-r',label = "predicted")
ax[0].plot(ES_5,y_sample_5_3,'og',label="sample")
ax[0].grid()
#  ax[0].set_xlabel("data points")
ax[0].set_ylabel("y")
ax[0].set_title("N = 5")

ax[1].plot(x,TrueFunction(x),'-k',label = "True function")
ax[1].plot(x,y_pred_10_3,'-r',label = "predicted")
ax[1].plot(ES_10,y_sample_10_3,'og',label="sample")
ax[1].grid()
ax[1].legend(loc=[1.01,0.5])
#  ax[1].set_xlabel("data points")
ax[1].set_ylabel("y")
ax[1].set_title("N = 10")

ax[2].plot(x,TrueFunction(x),'-k',label = "True function")
ax[2].plot(x,y_pred_15_3,'-r',label = "predicted")
ax[2].plot(ES_15,y_sample_15_3,'og',label="sample")
ax[2].grid()
ax[2].set_xlabel("x")
ax[2].set_ylabel("y")
ax[2].set_title("N = 15")

fig.suptitle(r"$(1,x,x^2,x^3)$")

# plt.savefig("polynomial_3.png",dpi=150,bbox_inches="tight")

plt.show()

# degree 4
fig,ax = plt.subplots(3,1,figsize=(12,6),sharex=True,sharey=True)
x = np.linspace(0,1,101)
ax = ax.flatten()

ax[0].plot(x,TrueFunction(x),'-k',label = "True function")
ax[0].plot(x,y_pred_5_4,'-r',label = "predicted")
ax[0].plot(ES_5,y_sample_5_4,'og',label="sample")
ax[0].grid()
#  ax[0].set_xlabel("data points")
ax[0].set_ylabel("y")
ax[0].set_title("N = 5")

ax[1].plot(x,TrueFunction(x),'-k',label = "True function")
ax[1].plot(x,y_pred_10_4,'-r',label = "predicted")
ax[1].plot(ES_10,y_sample_10_4,'og',label="sample")
ax[1].grid()
ax[1].legend(loc=[1.01,0.5])
#  ax[1].set_xlabel("data points")
ax[1].set_ylabel("y")
ax[1].set_title("N = 10")

ax[2].plot(x,TrueFunction(x),'-k',label = "True function")
ax[2].plot(x,y_pred_15_4,'-r',label = "predicted")
ax[2].plot(ES_15,y_sample_15_4,'og',label="sample")
ax[2].grid()
ax[2].set_xlabel("x")
ax[2].set_ylabel("y")
ax[2].set_title("N = 15")

fig.suptitle(r"$(1,x,x^2,x^3,x^4)$")

# plt.savefig("polynomial_4.png",dpi=150,bbox_inches="tight")

plt.show()


#==============================================================================
---------------------------------------------------------------------------
ModuleNotFoundError                       Traceback (most recent call last)
Cell In[1], line 11
      9 # importing needed modules
     10 import numpy as np
---> 11 import pandas as pd
     12 import matplotlib.pyplot as plt
     13 from scipy.stats import qmc

ModuleNotFoundError: No module named 'pandas'